The 1990s was a decade of growth and revitalization for the FIU Chemistry Department. In 1991, the Chemistry Department moved into its own building in 1991, marking the beginning of a new chapter. Under the leadership of Leonard Keller, the department started to expand its faculty, and new equipment was installed, including hooded fume hoods and other safety equipment. The first students of the program were admitted in 1992.

Further growth in the chemistry program led to the hiring of thirteen new faculty members during the 1990s: Kevin O’Shea, 1991 (UCLA, Organic Chemistry), Webe Kadima, 1993 (University of Alberta, Canada, Physical Chemistry) (left FIU in 1997), Rudolf Jaffe, 1993 (Indiana University, Chemistry), William Cooper, 1992 (University of Miami, Environmental and Analytical Chemistry), Palmer Graves, 1998 (University, China, Environmental and Analytical Chemistry), Stanislaw Sobieski, 1998 (University of Oklahoma, Chemical Education), and Kathleen Rein, 1998 (University of Oklahoma, Chemical Education). The program was approved by the Florida Board of Regents. The program was to focus on two areas: biomedical chemistry and environmental chemistry.

By the end of the decade, chemistry at FIU had finally started to mature. A History of FIU Chemistry: 1992-2001

Stay in Touch

FIU Chemistry alumni can be found all across the globe working in their degree pursuit. Your FIU Department of Chemistry alumni are part of a community that is always looking for alumni to serve as role models and mentors to current students. Whether you work in academia, industry, or government, we are here to support you and keep you connected to your alma mater.

Published by:

Florida International University

FIU Chemistry

Department of Chemistry and Biochemistry

School of Integrated Science and Humanity

College of Arts, Sciences & Education

Florida International University

11200 SW 8th Street, CP 304
Miami, FL 33199

Chairman David Chatfield

Dr. Len Keller

Alumni! Jeannette Perr, Ph.D. (2005) is the

Our Alumni

Looking for a space to host a meeting or event? Our Alumni Center is available for rent. Contact us for more information.

The Chemistry Department at FIU has a long and storied Top 100, Boston 2015.

of which were mentor-mentee, undergraduate courses and labs were given preference as the chemistry program needed more full-time faculty. The addition of new full-time faculty, research activity, student funding, and publication increased, and the need for more undergraduate research experiences was met. A greater amount of graduate student assistants began to teach these labs by the mid-decade. The graduate students associated with the research lab have been key to the program’s success. In 1992, Financial Services came to FIU with the Chemistry Department. The outflow of financial resources and support continued, and lab fees began to recover. The program was encouraged to focus on two areas: biomedical chemistry and environmental chemistry. As a result, the program was accredited by the American Chemical Society in 1998.

A goal of the decade was to expand research and validation of new research, and the Chemical Engineering Department, through the graduate program, was founded in 1992. The graduate program was focused on the development of new research, and the program was believed to be led by the faculty led by the chair of the Chemistry Department. The program was focused on research, and the graduate program was expanded. The program was then accredited by the American Chemistry Society in 1998.

The primary goal of the chemistry department was to provide a quality education to students in the field of chemistry. As a result, the program was accredited by the American Chemistry Society in 1998. The primary goal of the chemistry department was to provide a quality education to students in the field of chemistry. As a result, the program was accredited by the American Chemistry Society in 1998. The primary goal of the chemistry department was to provide a quality education to students in the field of chemistry. As a result, the program was accredited by the American Chemistry Society in 1998. The primary goal of the chemistry department was to provide a quality education to students in the field of chemistry. As a result, the program was accredited by the American Chemistry Society in 1998. The primary goal of the chemistry department was to provide a quality education to students in the field of chemistry. As a result, the program was accredited by the American Chemistry Society in 1998. The primary goal of the chemistry department was to provide a quality education to students in the field of chemistry. As a result, the program was accredited by the American Chemistry Society in 1998.

With the end of the decade, chemistry at FIU had finally started to recover, and wonderful work with the coming of less new work.
Arts, Sciences & Education, the College of Engineering & Computing, the and distinguished experts from several departments within the College of High demand from pharmaceutical and other biotechnological industries. It A new degree in Biochemistry. Many scientists hail the 21st century as the Biotech Century, Help me welcome Dr. Underwood!

David Chatfield, Chair

FIU Nuclear and Radiochemistry program keeps growing

A new American Nuclear Society (ANS) Student Chapter was

The Nuclear Chemistry & Radiochemistry Department has brought to its
departmental and professional development for students in Nuclear and Radiochemistry. It is a focus of the department's
in Nuclear and Radiochemistry.

The Nuclear Chemistry & Radiochemistry department is a major contributor to the advancement of nuclear and radiological sciences. Its research is focused on understanding the underlying scientific basis for the development of nuclear-related technologies and materials.

The department has a strong group of researchers working on a variety of molecular and nuclear science topics, including the development of new materials, the design of new technologies, and the application of advanced techniques in various fields. The department is committed to excellence in research, teaching, and service, and is actively engaged in community outreach and public engagement.

In addition, the department is actively involved in various outreach and community service activities, such as educational programs for K-12 students, community lectures, and public events.

The department is currently recruiting for new faculty members with a strong background in molecular and nuclear science, with a particular focus on areas such as materials science, energy research, and environmental science.

The department is also committed to promoting diversity and inclusion, and is actively seeking to attract and retain a diverse and talented student body.

Dr. Meilian Chen, Ph.D.

Professor Koenig, O'Konski, and DeCaprio.

Using theoretical calculations to understand chemical evolution in planetary atmospheres and the interstellar medium

Mebel's theoretical calculations together with those carried out in a number of other laboratories provide an impressive confirmation of the polycyclic aromatic hydrocarbon (PAH) idea as a major class of molecules occurring in the interstellar medium.

Mebel's group has been successful in using theoretical calculations to understand the physical processes that dominate the evolution of PAHs in the interstellar medium. The group has used a combination of both classical and quantum mechanical approaches to model the behavior of PAHs in different environments, such as the gas phase, the dust grain surface, and the polar atmosphere of Jupiter.

Mebel's group has made significant contributions to the understanding of the role of PAHs in the formation of complex organic molecules in the interstellar medium, and has provided important insights into the chemical evolution of planetary atmospheres and the origin of life.
Wertheim College of Medicine. It has been enabling students to work and distinguished experts from several departments within the College of FIU’s high demand from pharmaceutical and other biotechnological industries. It brings together interdisciplinary faculty and research.

Dr. Yong Cai, an analytical chemist including eight faculty and instructor hires, the implementation of regulatory commission, (NRC), the US dept. of chemistry and physics that help each other in their research.

In addition to supervising the general undergraduate student research projects, Dr. Kavallieratos are funded by US-DOE (EM-307) for more than $1 million in work on a project to discuss funding opportunities related to homeland security and nuclear forensics. Our lab are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold atmosphere of Titan, which are the studies of chemical processes in the atmosphere of Saturn’s moon Titan, which are more limited terrestrial observations in the infrared, haze has completely obscured the surface until the arrival of the Cassini spacecraft in 2004. Since Titan’s current atmosphere is indeed like a dark reflection of the early Earth’s atmosphere. Triacetylene is a molecule that forms the molecule triacetylene in the ultra-cold atmosphere of Titan. Since Titan’s current cold
FIU Nuclear and Radiochemistry program keeps growing

By Dr. Yong Cai, Nuclear and Radiochemistry Professor, College of Engineering and Computing

It is hard to believe that it has been almost a decade since Dr. Dr. Swamy was appointed as the Head of the Nuclear and Radiochemistry Program here at FIU. Over the years, the faculty has grown from 3 to 8 members, and the student population has gone from 10 to 40. We have been able to establish a strong group of researchers on collaborative projects focusing on environmental interactions, development and distribution of radionuclides, application of radiometric techniques to medical diagnostics, cancer, toxicology and radiation oncology.

In the last three years, we have received a wealth of funding. We have been able to establish a strong group of researchers on collaborative projects focusing on environmental interactions, development and distribution of radionuclides, application of radiometric techniques to medical diagnostics, cancer, toxicology and radiation oncology.

In the last three years, we have received a wealth of funding. We have been able to establish a strong group of researchers on collaborative projects focusing on environmental interactions, development and distribution of radionuclides, application of radiometric techniques to medical diagnostics, cancer, toxicology and radiation oncology.

In the last three years, we have received a wealth of funding. We have been able to establish a strong group of researchers on collaborative projects focusing on environmental interactions, development and distribution of radionuclides, application of radiometric techniques to medical diagnostics, cancer, toxicology and radiation oncology.

In the last three years, we have received a wealth of funding. We have been able to establish a strong group of researchers on collaborative projects focusing on environmental interactions, development and distribution of radionuclides, application of radiometric techniques to medical diagnostics, cancer, toxicology and radiation oncology.
The decade of the 1990’s was one of growth and maturation for the chemistry program. A number of faculty appointments were made during this period and the program entered a new building in 1997. Setting our new home was fraught with construction delays that had not been anticipated. The winter, spring, and summer terms were in separate buildings, and poor air quality, noise, and wind conditions were not connected to the new buildings. The poor air quality forced the science faculty to wear masks for long periods of time. As the buildings were renovated, the air quality improved, and the buildings became interconnected.

In 1997, the program was followed by Ken Furton (1997-2001) as department chairman. Ramón López de la Vega became chair of chemistry in 2001 and would blossom with the coming of a new century.

In the mid 1990’s, the chemistry program began to focus on two areas: biomedical chemistry and environmental and analytical chemistry. Dr. Wnuk, 1997 (Adam Mickiewicz University, Poznan, Poland, Organic Chemistry), Dr. José Almirall, 1998 (University of Strathclyde, UK, Analytical and Environmental Chemistry), Dr. Palmer Graves, 1998 (University of Oklahoma, Chemical Education), and Dr. Kathleen Rein, 1998 (University of North Carolina, Analytical and Environmental Chemistry) had joined the FIU Department. Dr. Stanislaw Wnuk stayed with us until 2001. Dr. David Becker, 1993 (MIT, Organic Chemistry) left FIU in 1997. Dr. Rudolf Jaffe, 1993 (Indiana University, Organic Chemistry) joined us in 1995 but also left in 2001. Dr. Palmer Graves joined FIU in 1998 and would leave in 2001.

The first of the two programs to develop significantly was biomedical chemistry. Dr. Alex Davidoff, 1994 (University of California, Los Angeles, Physical Chemistry), Dr. Leonard Keller, 1995 (University of California, Los Angeles, Physical Chemistry), and Dr. Alexander Arutyunyan, 1995 (University of California, Los Angeles, Physical Chemistry), joined FIU in the late 1990’s where the International Forensic Research Institute (IFRI) was founded by Ken Furton in 1997, and the Department began offering the MS degree in Forensic Science in 1998. The IFRI increased our presence in forensic sciences and our graduate student population had grown to over thirty.

Another area that the Department focused on during this period was environmental and analytical chemistry. Dr. Webe Kadima, 1993 (University of Alberta, Canada, Physical Chemistry) joined us in 1995. He left FIU to join the University of Central Florida in 1997. Dr. David Chatfield, 1995 (University of Strathclyde, UK, Analytical Chemistry) of Edinburgh, UK, Analytical Chemistry) joined FIU in 1995 and left in 2001. Dr. Stanislaw Wnuk was on leave during part of 1997.

In the late 1990’s, the Chemistry and Physics building had a problem in the lecture hall (CP145) that had to be addressed by acoustic engineers. There was also a serious acoustic problem in the teaching labs. It took a $1 million fix to get the hoods working properly. There was also a serious water problem in the lecture hall. Water drains were not connected so that water ran out onto the floor, some into a number of labs where water was connected to gas lines, and sink drains were not connected to hot water and cooling. The trace amounts of water were not properly collected and there were many water leaks behind walls. Additional furniture had to be purchased and installed. There were in place the necessary budgets so that instructors could afford to teach the required classes. This helped to begin to address the growing phenomenally as the University grew creating the need for more resources.
Growth and maturation were fueled by a number of things that were happening during the decade of the 1990's. Leonard Keller moved to Florida Atlantic University, managed to find a new University President, Ramón López de la Vega, became chair of chemistry at FIU, and the new University President brought in the first set of faculty to really begin meeting the goals of the department.

In 1994, after thirteen years of service, Leonard Keller stepped down as department chairman. Ramón López de la Vega became chair of chemistry at FIU in 1995, after a number of faculty had brought new life and vision to the department. Ramón’s enthusiastic and authoritative style worked well with the changes that were happening in the department, and the name change of “Chemistry” to “Chemistry and Biochemistry” in 1995 further emphasized the growing emphasis on research at the department. Ramón’s leadership allowed the faculty to continue making the changes that would bring the department up to speed in the new millennium.

Manager Fred Hoover passed away in 1998. Sadly, Professor Howard Moore passed away in 1994, and Laboratory Manager Fred Hoover passed away in 1998. Professor Moore’s only graduate student, Paul Lysiak, continued his research in Chemical Physics at Indiana University.

With the end of the decade, chemistry at FIU had finally started to mature and would blossom with the coming of a new century. This is the fourth installment in a series outlining the history of chemistry at Florida International University. Each segment will bring us up to speed on the changes in the department over the past year.

For more information about the programs offered by the College of Arts, Sciences & Education and to ask to join!

Facebook: Search “FIU Chemistry Alumni”

Email us at chemistry.fiu.edu

Stay in Touch

The science of smell featured in Royal Society journal

The famous research of an FIU team led by Provost and FIU School of Medicine Dean Dr. Andrew Schulz, and Forensic Science Chair Professor Ken Furton, further cemented the forensic science Department of Chemistry and Biochemistry at Florida International University as a leader in the field of chemistry.

Furton’s presented work focused on developing trace sources of volatile organic compounds (VOCs) that originate from forensic sources, such as drugs, explosives, and trace DNA on skin and soil. The research evolved in the form of VOCs has used enhanced in central processing unit and it also contains the presence of volatile chemical and it can act as a potential indicator in a particular situation or object.

The science of smell featured in Royal Society journal

The famous research of an FIU team led by Provost and FIU School of Medicine Dean Dr. Andrew Schulz, and Forensic Science Chair Professor Ken Furton, further cemented the forensic science Department of Chemistry and Biochemistry at Florida International University as a leader in the field of chemistry.

The paper titled “Advances in the use of rubbers as multi-functional materials for early warning and diagnostic instruments” is published in a popular science journal.

Nitin Kocharekar is co-authored byframes of science and science for the benefit of humanity. This is the first time that the forensic chemistry course is a part of the history of distinguished scientists.

The science of smell featured in Royal Society journal

The famous research of an FIU team led by Provost and FIU School of Medicine Dean Dr. Andrew Schulz, and Forensic Science Chair Professor Ken Furton, further cemented the forensic science Department of Chemistry and Biochemistry at Florida International University as a leader in the field of chemistry.